v = [3 ; 1]
die beiden Produkte (Skalarprodukt) s = v'*v und
(dyadisches Produkt)
Mv = v*v' an!
Suchen Sie die speziellen Permutations/Auswahlmatrizen
und
, so dass
die folgende Matrizengleichung für beliebige Werte der Matrix A gilt!
t = 0:pi/100:6*pi ; gh = 2; x = 3*sqrt(2)*cos(t - pi/4) + 0 y = 3*sqrt(2)*sin(t - pi/4) + 0 z = t*gh/(2*pi) plot3(x,y,z) axis equal hold on plot3([3 3 3 3 ],[-3 -3 -3 -3],[0 2 4 6],'ro') % + yz Ebene bei t-pi/4 = pi/2, also bei t=3*pi/4 xe = 0, ye = 3*sqrt(2), ze = 3*pi/4*gh/(2*pi) % ze = 0.75 plot3([xe,xe,xe],[ye,ye,ye],[ze ze+2 ze+4],'mo') hold off
N = [0 4 0]'; E = [4 0 0]'; S = [0 -4 0]';
W = [-4 0 0]'; T = [0 0 4]'; B = [0 0 -4]';
MST = (S+T)/2,MNT = (N+T)/2
u = MNT-E, v = MST - E
No = cross(u,v)
en = No/norm(No)
dkrit = en'*E
dT = en'*T - dkrit
dW = en'*W - dkrit
MH = [0 0 2]'
dMH = en'*MH -dkrit
Oc = [S T N B S E T W B E N W S];
Cl = [E MST MNT E]
plot3(Oc(1,:),Oc(2,:),Oc(3,:),'k')
hold on ; axis equal
plot3(Cl(1,:),Cl(2,:),Cl(3,:),'r')
hold off
view(12,8)
MST =
0
-2
2
MNT =
0
2
2
u =
-4
2
2
v =
-4
-2
2
No =
8
0
16
en =
0.4472
0
0.8944
dkrit =
1.7889
dT =
1.7889
dW =
-3.5777
MH =
0
0
2
dMH =
0
Qi = [2 6 6 2 ; 0 0 4 4 ; 1 1 1 1 ]
Tz = [1 0 -2; 0 1 0; 0 0 1]
Tb = [1 0 2; 0 1 0; 0 0 1]
R = [-1 0 0; 0 -1 0 ; 0 0 1]
M = [1 0 0; 0 -1 0 ; 0 0 1]
Ttot = M*Tb*R*Tz
Qz = Tz*Qi
Qzr = R*Qz
Qr = Tb * Qzr
Qf = M*Qr
stdhcaxis
plothclin(Qi,'g') ; plothclin(Qz,'b')
plothclin(Qzr,'m') ; plothclin(Qr,'r')
plothclin(Qf,'k') ; hold off
Qi =
2 6 6 2
0 0 4 4
1 1 1 1
Tz =
1 0 -2
0 1 0
0 0 1
Tb =
1 0 2
0 1 0
0 0 1
R =
-1 0 0
0 -1 0
0 0 1
M =
1 0 0
0 -1 0
0 0 1
Ttot =
-1 0 4
0 1 0
0 0 1
Qz =
0 4 4 0
0 0 4 4
1 1 1 1
Qzr =
0 -4 -4 0
0 0 -4 -4
1 1 1 1
Qr =
2 -2 -2 2
0 0 -4 -4
1 1 1 1
Qf =
2 -2 -2 2
0 0 4 4
1 1 1 1
A=[0 0 0]', B=[6 0 0]',
C=[6 6 0]', D=[0 6 0]',
E=[0 0 6]', F=[6 0 6]',
G=[6 6 6]', H=[0 6 6]',
MCG = (C+G)/2
uab = MCG - B
va = G - B
vb = H - B
wa = acosd(uab'*va/norm(uab)/norm(va))
wb = acosd(uab'*vb/norm(uab)/norm(vb))
MCG =
6
6
3
uab =
0
6
3
va =
0
6
6
vb =
-6
6
6
wa =
18.4349
wb =
39.2315