B
Ingenieurmathematik Prüfung 1
18.Nov.2010
Zeit 90 Minuten, Reihenfolge beliebig, 8 Punkte pro Hauptaufgabe,
40 Pt. = N.6.
v = [3 ; 1]
die beiden Produkte (Skalarprodukt) s = v'*v und
(dyadisches Produkt)
Mv = v*v' an!
t = 0:pi/100:6*pi ; gh = 2; x = 3*sqrt(2)*cos(t + 3*pi/4) + 0 y = 3*sqrt(2)*sin(t + 3*pi/4) + 0 z = t*gh/(2*pi) plot3(x,y,z) axis equal hold on plot3([-3 -3 -3 -3 ],[3 3 3 3],[0 2 4 6],'ro') % + yz Ebene bei t+3*pi/4 = 5*pi/2, also bei t=7*pi/4 xe = 0, ye = 3*sqrt(2), ze = 7*pi/4*gh/(2*pi) % ze = 0.75 plot3([xe,xe,xe],[ye,ye,ye],[ze ze+2 ze+4],'mo') hold off
N = [0 2 0]'; E = [2 0 0]'; S = [0 -2 0]';
W = [-2 0 0]'; T = [0 0 2]'; B = [0 0 -2]';
MST = (S+T)/2,MNT = (N+T)/2
u = MNT-E, v = MST - E
No = cross(u,v)
en = No/norm(No)
dkrit = en'*E
dT = en'*T - dkrit
dW = en'*W - dkrit
MH = [0 0 1]'
dMH = en'*MH -dkrit
Oc = [S T N B S E T W B E N W S];
Cl = [E MST MNT E]
plot3(Oc(1,:),Oc(2,:),Oc(3,:),'k')
hold on ; axis equal
plot3(Cl(1,:),Cl(2,:),Cl(3,:),'r')
hold off
view(12,8)
MST =
0
-1
1
MNT =
0
1
1
u =
-2
1
1
v =
-2
-1
1
No =
2
0
4
en =
0.4472
0
0.8944
dkrit =
0.8944
dT =
0.8944
dW =
-1.7889
MH =
0
0
1
dMH =
0
Qi = [4 6 6 4 ; 0 0 2 2 ; 1 1 1 1 ]
Tz = [1 0 -4; 0 1 0; 0 0 1]
Tb = [1 0 4; 0 1 0; 0 0 1]
R = [-1 0 0; 0 -1 0 ; 0 0 1]
M = [1 0 0; 0 -1 0 ; 0 0 1]
Ttot = M*Tb*R*Tz
Qz = Tz*Qi
Qzr = R*Qz
Qr = Tb * Qzr
Qf = M*Qr
stdhcaxis
plothclin(Qi,'g') ; plothclin(Qz,'b')
plothclin(Qzr,'m') ; plothclin(Qr,'r')
plothclin(Qf,'k') ; hold off
Qi =
4 6 6 4
0 0 2 2
1 1 1 1
Tz =
1 0 -4
0 1 0
0 0 1
Tb =
1 0 4
0 1 0
0 0 1
R =
-1 0 0
0 -1 0
0 0 1
M =
1 0 0
0 -1 0
0 0 1
Ttot =
-1 0 8
0 1 0
0 0 1
Qz =
0 2 2 0
0 0 2 2
1 1 1 1
Qzr =
0 -2 -2 0
0 0 -2 -2
1 1 1 1
Qr =
4 2 2 4
0 0 -2 -2
1 1 1 1
Qf =
4 2 2 4
0 0 2 2
1 1 1 1
A=[0 0 0]', B=[6 0 0]',
C=[6 6 0]', D=[0 6 0]',
E=[0 0 6]', F=[6 0 6]',
G=[6 6 6]', H=[0 6 6]',
MBF = (B+F)/2
uab = MBF - D
va = F - D
vb = C - D
wa = acosd(uab'*va/norm(uab)/norm(va))
wb = acosd(uab'*vb/norm(uab)/norm(vb))
MBF =
6
0
3
uab =
6
-6
3
va =
6
-6
6
vb =
6
0
0
wa =
15.7932
wb =
48.1897